134 research outputs found

    Transient and Microscale Deformations and Strains Measured under Exogenous Loading by Noninvasive Magnetic Resonance

    Get PDF
    Characterization of spatiotemporal deformation dynamics and material properties requires non-destructive methods to visualize mechanics of materials and biological tissues. Displacement-encoded magnetic resonance imaging (MRI) has emerged as a noninvasive and non-destructive technique used to quantify deformation and strains. However, the techniques are not yet applicable to a broad range of materials and load-bearing tissues. In this paper, we visualize transient and internal material deformation through the novel synchrony of external mechanical loading with rapid displacement-encoded MRI. We achieved deformation measurements in silicone gel materials with a spatial resolution of 100 µm and a temporal resolution (of 2.25 ms), set by the repetition time (TR) of the rapid MRI acquisition. Displacement and strain precisions after smoothing were 11 µm and 0.1%, respectively, approaching cellular length scales. Short (1/2 TR) echo times enabled visualization of in situ deformation in a human tibiofemoral joint, inclusive of multiple variable T2 biomaterials. Moreover, the MRI acquisitions achieved a fivefold improvement in imaging time over previous technology, setting the stage for mechanical imaging in vivo. Our results provide a general approach for noninvasive and non-destructive measurement, at high spatial and temporal resolution, of the dynamic mechanical response of a broad range of load-bearing materials and biological tissues

    Cardiac MR Elastography: Comparison with left ventricular pressure measurement

    Get PDF
    Purpose of the Study: To compare magnetic resonance elastography (MRE) with ventricular pressure changes in an animal model. Methods: Three pigs of different cardiac physiology (weight, 25 to 53 kg; heart rate, 61 to 93 bpm; left ventricular [LV] end-diastolic volume, 35 to 70 ml) were subjected to invasive LV pressure measurement by catheter and noninvasive cardiac MRE. Cardiac MRE was performed in a short-axis view of the heart and applying a 48.3-Hz shear-wave stimulus. Relative changes in LV-shear wave amplitudes during the cardiac cycle were analyzed. Correlation coefficients between wave amplitudes and LV pressure as well as between wave amplitudes and LV diameter were determined. Results: A relationship between MRE and LV pressure was observed in all three animals (R-square [greater than or equal to] 0.76). No correlation was observed between MRE and LV diameter (R-square [less than or equal to] 0.15). Instead, shear wave amplitudes decreased 102 +/- 58 ms earlier than LV diameters at systole and amplitudes increased 175 +/- 40 ms before LV dilatation at diastole. Amplitude ratios between diastole and systole ranged from 2.0 to 2.8, corresponding to LV pressure differences of 60 to 73 mmHg. Conclusion: Externally induced shear waves provide information reflecting intraventricular pressure changes which, if substantiated in further experiments, has potential to make cardiac MRE a unique noninvasive imaging modality for measuring pressure-volume function of the heart

    Image quality and diagnostic accuracy of unenhanced SSFP MR angiography compared with conventional contrast-enhanced MR angiography for the assessment of thoracic aortic diseases

    Get PDF
    The purpose of this study was to determine the image quality and diagnostic accuracy of three-dimensional (3D) unenhanced steady state free precession (SSFP) magnetic resonance angiography (MRA) for the evaluation of thoracic aortic diseases. Fifty consecutive patients with known or suspected thoracic aortic disease underwent free-breathing ECG-gated unenhanced SSFP MRA with non-selective radiofrequency excitation and contrast-enhanced (CE) MRA of the thorax at 1.5 T. Two readers independently evaluated the two datasets for image quality in the aortic root, ascending aorta, aortic arch, descending aorta, and origins of supra-aortic arteries, and for abnormal findings. Signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were determined for both datasets. Sensitivity, specificity, and diagnostic accuracy of unenhanced SSFP MRA for the diagnosis of aortic abnormalities were determined. Abnormal aortic findings, including aneurysm (n = 47), coarctation (n = 14), dissection (n = 12), aortic graft (n = 6), intramural hematoma (n = 11), mural thrombus in the aortic arch (n = 1), and penetrating aortic ulcer (n = 9), were confidently detected on both datasets. Sensitivity, specificity, and diagnostic accuracy of SSFP MRA for the detection of aortic disease were 100% with CE-MRA serving as a reference standard. Image quality of the aortic root was significantly higher on SSFP MRA (P < 0.001) with no significant difference for other aortic segments (P > 0.05). SNR and CNR values were higher for all segments on SSFP MRA (P < 0.01). Our results suggest that free-breathing navigator-gated 3D SSFP MRA with non-selective radiofrequency excitation is a promising technique that provides high image quality and diagnostic accuracy for the assessment of thoracic aortic disease without the need for intravenous contrast material

    Parametric exploration of the liver by magnetic resonance methods

    Get PDF
    MRI, as a completely noninvasive technique, can provide quantitative assessment of perfusion, diffusion, viscoelasticity and metabolism, yielding diverse information about liver function. Furthermore, pathological accumulations of iron and lipids can be quantified. Perfusion MRI with various contrast agents is commonly used for the detection and characterization of focal liver disease and the quantification of blood flow parameters. An extended new application is the evaluation of the therapeutic effect of antiangiogenic drugs on liver tumours. Novel, but already widespread, is a histologically validated relaxometry method using five gradient echo sequences for quantifying liver iron content elevation, a measure of inflammation, liver disease and cancer. Because of the high perfusion fraction in the liver, the apparent diffusion coefficients strongly depend on the gradient factors used in diffusion-weighted MRI. While complicating analysis, this offers the opportunity to study perfusion without contrast injection. Another novel method, MR elastography, has already been established as the only technique able to stage fibrosis or diagnose mild disease. Liver fat content is accurately determined with multivoxel MR spectroscopy (MRS) or by faster MRI methods that are, despite their widespread use, prone to systematic error. Focal liver disease characterisation will be of great benefit once multivoxel methods with fat suppression are implemented in proton MRS, in particular on high-field MR systems providing gains in signal-to-noise ratio and spectral resolution

    What scans we will read: imaging instrumentation trends in clinical oncology

    Get PDF
    Oncological diseases account for a significant portion of the burden on public healthcare systems with associated costs driven primarily by complex and long-lasting therapies. Through the visualization of patient-specific morphology and functional-molecular pathways, cancerous tissue can be detected and characterized non- invasively, so as to provide referring oncologists with essential information to support therapy management decisions. Following the onset of stand-alone anatomical and functional imaging, we witness a push towards integrating molecular image information through various methods, including anato-metabolic imaging (e.g., PET/ CT), advanced MRI, optical or ultrasound imaging. This perspective paper highlights a number of key technological and methodological advances in imaging instrumentation related to anatomical, functional, molecular medicine and hybrid imaging, that is understood as the hardware-based combination of complementary anatomical and molecular imaging. These include novel detector technologies for ionizing radiation used in CT and nuclear medicine imaging, and novel system developments in MRI and optical as well as opto-acoustic imaging. We will also highlight new data processing methods for improved non-invasive tissue characterization. Following a general introduction to the role of imaging in oncology patient management we introduce imaging methods with well-defined clinical applications and potential for clinical translation. For each modality, we report first on the status quo and point to perceived technological and methodological advances in a subsequent status go section. Considering the breadth and dynamics of these developments, this perspective ends with a critical reflection on where the authors, with the majority of them being imaging experts with a background in physics and engineering, believe imaging methods will be in a few years from now. Overall, methodological and technological medical imaging advances are geared towards increased image contrast, the derivation of reproducible quantitative parameters, an increase in volume sensitivity and a reduction in overall examination time. To ensure full translation to the clinic, this progress in technologies and instrumentation is complemented by progress in relevant acquisition and image-processing protocols and improved data analysis. To this end, we should accept diagnostic images as “data”, and – through the wider adoption of advanced analysis, including machine learning approaches and a “big data” concept – move to the next stage of non-invasive tumor phenotyping. The scans we will be reading in 10 years from now will likely be composed of highly diverse multi- dimensional data from multiple sources, which mandate the use of advanced and interactive visualization and analysis platforms powered by Artificial Intelligence (AI) for real-time data handling by cross-specialty clinical experts with a domain knowledge that will need to go beyond that of plain imaging

    Guidelines and protocols for cardiovascular magnetic resonance in children and adults with congenital heart disease: SCMR expert consensus group on congenital heart disease

    Full text link

    Development of a Training System for Cardiac Muscle Palpation

    No full text

    Introduction

    No full text
    corecore